Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Leak rate tests of penetrate cracked head plates and modeling of head plate thickness distribution for 3-D analyses

Tsukimori, Kazuyuki*; Yada, Hiroki; Ando, Masanori; Ichimiya, Masakazu*; Anoda, Yoshinari*

Proceedings of 12th International Conference on Asian Structure Integrity of Nuclear Components (ASINCO-12) (CD-ROM), p.105 - 121, 2018/04

In FBR plants the head plate constitutes a part of the boundary of the containment vessel (CV), therefore, it is an important issue if the function as the boundary is maintained or not in the severe accident. And also it is important to evaluate the leak rate from the penetrated crack of the head plate, in order to estimate the effect of released fission product out of CV. Authors conducted pressure endurance tests of head plate specimens subjected to external pressure, which covered post-buckling behaviors and until crack penetration. In this paper leak rate test results at several pressure levels are introduced and the tendency of leak rate behaviors with relation of the penetrate crack length and the pressure level are discussed. Also, the modeling of head plate thickness distribution for 3-D analyses based on the detailed 3-D measurement data of specimens is discussed, which possibly relates to the 3-D deformation patterns observed in the tests and the length of penetration cracks.

Oral presentation

A New probabilistic evaluation model on weld residual stress

Katsuyama, Jinya; Miyamoto, Yuhei*; Yamaguchi, Yoshihito; Mano, Akihiro; Li, Y.

no journal, , 

Weld residual stress (WRS) is one of the most important factors with a great deal of uncertainty, which is considered as a driving force for crack growth in the structural integrity assessment of piping welds. For more rational assessments, it is important to consider the uncertainty of WRS in probabilistic fracture mechanics (PFM) analysis. In the existing PFM analysis codes, the uncertainty of WRS is set through statistical process of multiple finite element analysis (FEA) results. This process depends on persons who perform PFM analysis, and it may give different uncertainties. In this study, we developed a new WRS evaluation model based on the Fourier transformation, and the model was introduced into PASCAL-SP which has been developed by Japan Atomic Energy Agency. Through these improvements of the code, the uncertainty of WRS can be taken into account automatically and appropriately by inputting multiple WRS analysis results directly as input data of PFM analysis.

2 (Records 1-2 displayed on this page)
  • 1